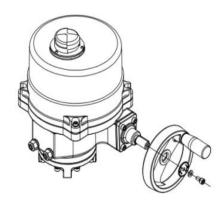


ИНСТРУКЦИЯ ПО УСТАНОВКЕ, ЭКСПЛУАТАЦИИ И ТЕХНИЧЕСКОМУ ОБСЛУЖИВАНИЮ


ПРИВОД ЭЛЕКТРИЧЕСКИЙ ЧЕТВЕРТЬОБОРОТНЫЙ СЕРИИ ОМ / ОМЕх

ПРИВОДЫ ЭЛЕКТРИЧЕСКИЕ ЧЕТВЕРТЬОБОРОТНЫЕ СЕРИИ ОМ / ОМЕХ

СОДЕРЖАНИЕ

ОПИСАНИЕ	3
СПЕЦИФИКАЦИЯ	4
ТРАНСПОРТИРОВКА И ХРАНЕНИЕ	4
РАСПАКОВКА И ОСМОТР	5
МОНТАЖ ПРИВОДА	5
ПЛАТА УПРАВЛЕНИЯ ПРИВОДА ОМ / OMEx C ОДНОФАЗНЫМ ДВИГАТЕЛЕМ	9
ПЛАТА УПРАВЛЕНИЯ ПРИВОДА ОМ / ОМЕх С ДВИГАТЕЛЕМ ПОСТОЯННОГО ТОКА	10
ПЛАТА УПРАВЛЕНИЯ ПРИВОДА ОМ / OMEx C ТРЕХФАЗНЫМ ДВИГАТЕЛЕМ	12
УСТРАНЕНИЕ НЕПОЛАДОК	
РАЗМЕРЫ ПРИВОДОВ	14
ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	19

ПРИВОД ЭЛЕКТРИЧЕСКИЙ ЧЕТВЕРТЬОБОРОТНЫЙ КОНФИГУРАЦИИ BASIC / INTEGRAL

Электрические четвертьоборотные приводы OM / OMEx предназначены для управления затворами дисковыми поворотными, кранами шаровыми и иных типов неполноповоротной трубопроводной арматуры. Корпус из алюминиевого сплава надежно защищает внутренние части привода от воздействий окружающей среды и обусловливает невысокую массу привода. Для защиты внутренних электрических цепей от конденсата предусмотрена внутренняя система обогрева. Качественные уплотнители деталей корпуса обеспечивают защиту от внешних воздействий, соответствующую стандарту IP67. Приводы широко применяются в машиностроении, нефтегазовой отрасли, химической промышленности, судостроении и пр.

ТЕХНИЧЕСКАЯ СПЕЦИФИКАЦИЯ

▶ Питание: AC 380V, 480V 50/60Hz

AC 24V, 110-120V, 220-240VAC 50/60Hz

DC24V

▶ Температура окружающей среды: -25°C to +70°C

Влажность: ≤95%RH

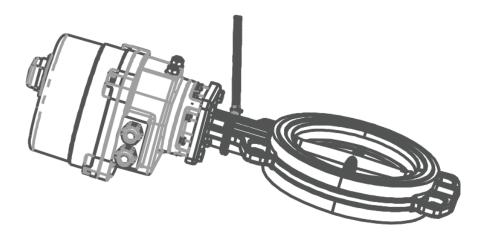
Время работы: - Старт/стоп: S2-15мин/час

- Регулирование: S4-50%

- Условия эксплуатации: общепромышленное исполнение, не допускающее внешних воздействий высокоагрессивных, леговоспламеняющихся либо взрывоопасных сред
- ▶ Опционально: взрывозащищенное исполнение ExdIIBT4, ExdIICT4/CT6
- Управляющий сигнал: Старт/стоп управление цифровым сигналом вкл/выкл
 - Регулирование: 4-20mA/0-10V/2-10V аналоговое управление
- ▶ Сигнал обратной связи: Старт/стоп обратная связь по положению сухого контакта (номинальный ток 5А при АС250VВ)
 - Регулирование 4-20mA/0-10V/2-10V позиционная аналоговая обратная связь
- Степень защиты: IP67 (в стандартном исполнении), IP68 опционально
- Специальные функции:
 - защита от превышения крутящего момента
 - защита от неправильного подключения фазы
 - обратная связь по неисправностям
 - обратная связь по положению привода 4-20mA
- ▶ Система изоляции двигателя: класс F (в стандартном исполнении), класс H опционально

Взрывозащищенные приводы ОМЕх

В настоящей Инструкции описаны операции по настройке приводов МТ в общепромышленном исполнении. Настройка взрывозащищенных версий МТЕх производится аналогичным образом в соответствии с установленным протоколом безопасности на производстве.


СПЕЦИФИКАЦИЯ

Тип привода	Момент	Время	позиционирования	Мощность	Фланец по ISO5211			
	(Nm)	DC	AC 1ph	AC 3ph	(Вт)			
			50H	lz				
OM2	100	16	19		40	F05/F07/F10/F10		
OM3	200	17	39		40	F05/F07/F10/F12		
OM4	400	19	29	1	90			
OM5	600	20	39	1	90	F10/F12/F14		
OM6	800	21	47	,	90	1 10/1 12/1 17		
OM7	1000	22	47	,	120			
OM8	1700	24	34		200	F12/F14/F16		
OM9	2300	34	47	,	200	F12/F14/F10		
OM10	3500	55	76	i	200	F14/F16		
OM11	5000	76	10	5	200	F14/F10		
OM12	8000	103	143	3	200	F25		
OM13	13000	-	109	9	400			
OM14	16000	-	129	9	400	F25/F30		
OM15	20000	-	15	5	400			

ТРАНСПОРТИРОВКА И ХРАНЕНИЕ

ТРАНСПОРТИРОВКА

- Запрещается использование маховика ручного дублера для подъема изделия во время транспортировки или установки.
- Запрещается подъем или перемещение приводной арматуры посредством зацепления за любую часть привода, действие возможно только при креплении строп непосредственно за сам клапан

Реальный привод и клапан могут отличаться от рисунка

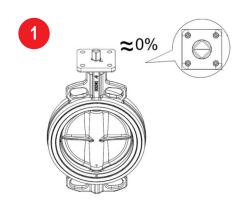
ВНИМАНИЕ!

Привод должен надежно поддерживаться до момента закрепления на монтажном фланце трубопроводной арматуры, фланец монтажной площадки должен соответствовать стандарту ISO5211.

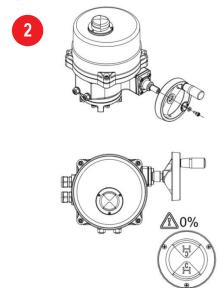
ПРИВОДЫ ЭЛЕКТРИЧЕСКИЕ ЧЕТВЕРТЬОБОРОТНЫЕ СЕРИИ ОМ / ОМЕх

ХРАНЕНИЕ

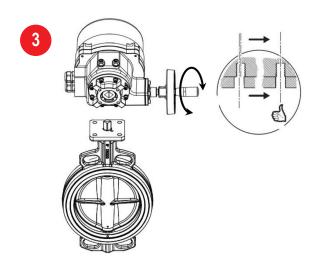
- Рекомендуемая температура при хранении привода -30 °C ~ +50 °C, следует избегать превышения +40 °C из-за возможного сокращения срока службы изделия
- Привод следует хранить внутри упаковочного контейнера в сухом месте, защищенном от образования конденсата

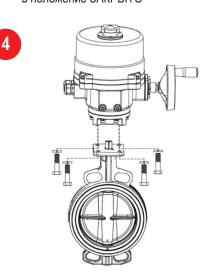

РАСПАКОВКА И ОСМОТР

Перед отправкой все приводы прошли строгий контроль, производитель гарантирует высокое качество изделий. Распаковку привод следует производить согласно инструкции, нанесенной на упаковочную коробку.


- Проверьте, не поврежден ли привод во время транспортировки;
- Проверьте, соответствует ли модель привода указанной на этикетке упаковочной коробки, соответствует ли фактическая упаковка упаковочному листу.

УСТАНОВКА ПРИВОДА


Порядок установки (реальный привод и клапан могут отличаться от рисунка)


Полностью закрытый клапан

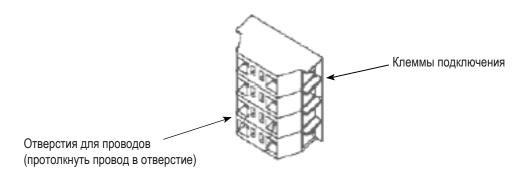
Вращая маховик, переведите привод в положение ЗАКРЫТО

Установите привод на клапан, совместите монтажные отверстия фланца привода и клапана

Закрепите привод на клапане

ПОДКЛЮЧЕНИЕ

- Ослабьте винты и снимите защитную крышку привода.
- Монтажные работы должны выполняться в соответствии с электрической схемой.
- При подключении проводов выньте заглушку герметичного кабельного ввода, вставьте кабель через цапфу герметичного ввода в электропривод. По завершению работа, поверните муфту цапфы герметичного ввода по часовой стрелке для фиксации проводов и герметизации.
- Проверьте и удостоверьтесь в подаче верного напряжения питания к приводу.
- Проведите пробный пуск привода.
- Убедившись, что все функции работают нормально, установите защитную крышку и затяните крепеж.



ВНИМАНИЕ:

Для обеспечения водонепроницаемости электропривода при выборе монтажного кабеля, пожалуйста, соблюдайте следующие требования:

- для приводов FM1/A/B-H используйте кабели диаметром от 6 до 12 мм;
- для приводов OM2-OM15 используйте кабели диаметром от 10 до 14 мм.

КЛЕММНАЯ КОЛОДКА

ВНИМАНИЕ!

- не включайте питание до завершения монтажа. Короткое замыкание и неправильная проводка могут привести к необратимому повреждению оборудования!
- следите за индикатором положения привода: после превышения положения полного открытия или полного закрытия не воздействуйте на маховик /рукоятку слишком сильно, иначе возможно повреждение привода!

РЕГУЛИРОВКА СИСТЕМЫ ОГРАНИЧИТЕЛЕЙ ХОДА ПРИВОДА

ВНИМАНИЕ!

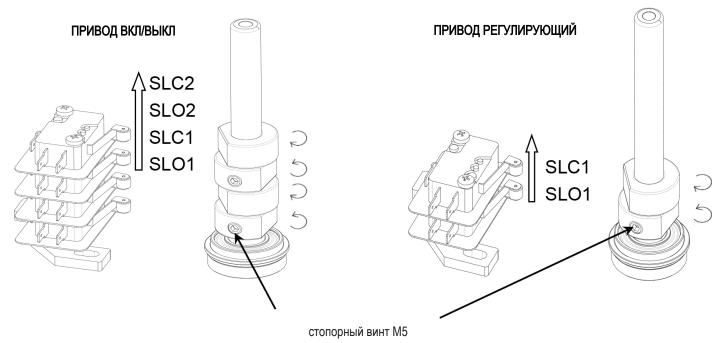
Указанные настройки были выполнены перед отправкой. Не перенастраивайте привод. При необходимости перенастройки работа должна выполняться квалифицированным специалистом.

РЕГУЛИРОВКА ОГРАНИЧЕНИЯ ХОДА И КОНЦЕВЫХ ВЫКЛЮЧАТЕЛЕЙ

- Кулачок ограничения хода и концевой выключатель используются для определения конечного положения клапана. При достижении клапаном предельного положения, кулачок приводит в действие концевой выключатель. Привод типа ВКЛ/ВЫКЛ стандартно оснащен четырьмя концевыми выключателями (SLO1 и SLC1, SLO2 и SLC2): SLO1 и SLC1 соответственно относятся к концевому выключателю открытия / закрытия, в то время как SLO2 и SLC2 являются вспомогательными концевыми выключателями, используемыми для обратной связи по сигналу.
- Регулирующий привод стандартно оснащен двумя концевыми выключателями (SLO1&SL1): SLO1 концевой выключатель открытого типа, SLC1 концевой выключатель закрытого типа. (Их легко отличить, обратившись к рисунку ниже)

Не регулируйте переключатели при нормальной работе клапана. При необходимости настройки следуйте дальнейшим инструкциям:

КАЛИБРОВКА ЗАКРЫТОГО ПОЛОЖЕНИЯ


- Выключите питание
- Полностью закройте клапан с помощью маховика ручного управления
- Используйте гаечный ключ с торцевой головкой 2,5 мм, чтобы ослабить стопорный винт М5
- Поверните кулачок SLC1 против часовой стрелки до срабатывания микропереключателя
- Медленно поворачивайте кулачок SLC1 по часовой стрелке до щелчка микропереключателя
- Затяните стопорный винт M5 на кулачке SLC1 и включите источник питания чтобы убедиться в правильности рабочего положения. Если требуемое положение не достигнуто повторите указанные действия
- После завершения настройки повторно проверьте фиксацию стопорного винта М5 на кулачке SLC1.

КАЛИБРОВКА ОТКРЫТОГО ПОЛОЖЕНИЯ

- Выключите питание
- Полностью закройте клапан с помощью маховика ручного управления
- Откройте верхнюю крышку и ослабьте стопорный винт М5 на кулачке SLO1 с помощью торцевого ключа диаметром 2,5 мм.
- Вращайте кулачок SLO1 по часовой стрелке до срабатывания микропереключателя
- Медленно поверните кулачок SLO1 против часовой стрелки до щелчка микропереключателя
- Затяните стопорный винт M5 на кулачке SLO1 и подайте питание, чтобы убедиться в правильности рабочего положения. Если желаемое местоположение не достигнуто повторите процедуру
- После завершения настройки еще раз проверьте фиксацию стопорного винта М5 на кулачке SLO1

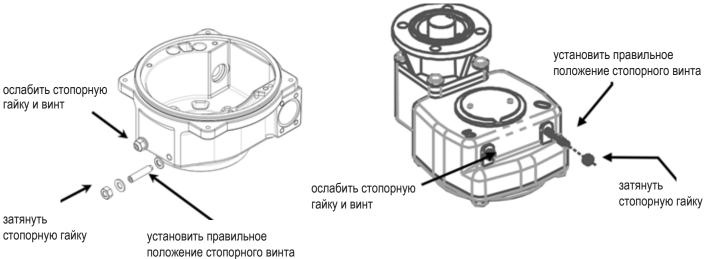
НАСТРОЙКА ОТКРЫТ/ЗАКРЫТ ДЛЯ ВСПОМОГАТЕЛЬНОГО КОНЦЕВОГО ВЫКЛЮЧАТЕЛЯ

Настройка вспомогательного концевого выключателя полного закрытия/полного размыкания (SLO2 и SLC2) такая же, как для SLO1 и SLC1 соответственно.

Кулачок SLO1 "открыт" CW:

увеличьте степень открытия до полностью открытого положения ССW: уменьшите степень открытия

Кулачок SLC1 "закрыть" CW:


уменьшить степень закрытия ССW: увеличить степень закрытия до положения полного закрытия

РЕГУЛИРОВКА СТОПОРНОГО ВИНТА

Изделие снабжено механическим стопорным винтом. Когда винт установлен - регулировка невозможна. При необходимости регулировки обратитесь к следующей инструкции:

- Отключите питание.
- Для привода ВКЛ/ВЫКЛ ослабьте стопорную гайку ограничения закрытия и ослабьте механический стопорный винт.
- Для регулирующего привода сначала ослабьте стопорный винт на секторной передаче.
- Поверните привод вручную в требуемое предельное положение.
- Поверните секторную шестерню по часовой стрелке до упора, затем закрепите стопорный винт для регулирующего привода.
- Поверните ограничительный винт до упора, затем отвинтите на один оборот.
- Затяните стопорную гайку.
- Убедитесь в том что реакция привода правильная, и положения ОТКРЫТ/ЗАКРЫТ корректны. Если нет повторите процедуру в соответствии с вышеописанными действиями.

ПРИВОДЫ OM2-OM9 (OMEx2-OMEx9) ПРИВОДЫ OM10-OM15 (OMEx10-OM-Ex15)

ВНИМАНИЕ!

Приводы уже отрегулированы заводом изготовителем. Настройки выполняются только в случае необходимости квалифицированным специалистом

ПЛАТА УПРАВЛЕНИЯ РЕГУЛИРУЮЩЕГО ПРИВОДА СЕРИИ ОМ / ОМЕх С ОДНОФАЗНЫМ ДВИГАТАЛЕМ

ВНИМАНИЕ!

Привод уже отрегулирован заводом изготовителем. Настройки выполняются только в случае необходимости квалифицированным специалистом

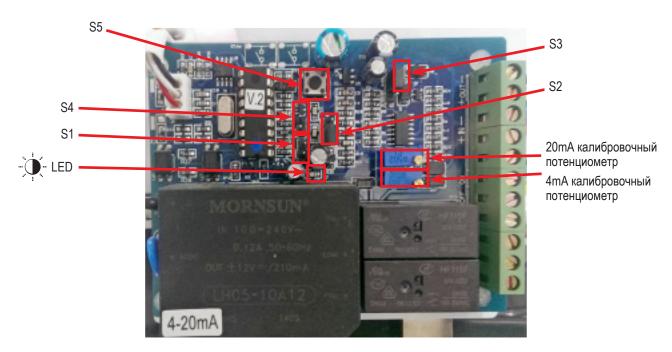


Рис.2 Плата управления электропривода однофазного серии ОМ

УСТАНОВКА И ИЗМЕНЕНИЕ ТИПОВ СИГНАЛОВ

Установки могут быть выполнены только в соответствии с Таблицей 3

Таблица 3 Выбор типа входного и выходного сигналов

Тип сигнала*	Входно	й сигнал	Выходной сигнал				
тип сигнала	S1	S2	S3	S4			
4-20mA	•	•	•	•			
0-10V	•	•	•	•			
2-10V	•	•	•	•			

^{*} Тип сигнала по умолчанию: токовый 4-20mA

КАЛИБРОВКА ТОКОВЫХ СИГНАЛОВ

- Нажмите кнопку S5 (см. рис. 2) и удерживайте 3 секунды, привод автоматически отрегулируется и запустится на полный ход.
- Подайте на привод сигнал 20mA чтобы привести его в полностью открытое положение, отрегулируйте потенциометр 20mA так, чтобы ток обратной связи составил ровно 20mA.
- Затем подайте сигнал 4mA, чтобы привести привод в полностью закрытое положение, и отрегулируйте потенциометр 4mA так, чтобы ток обратной связи составил ровно 4mA.

УСТАНОВКИ ПРИВОДА

Калибровка	Инди	кация	Реакция привода
1. Подайте питание на клеммы 1 и 2		горит	Привод перемещается в положение, указанное управляющим сигналом.
2. Нажмите S5		не горит	Привод перемещается в положение "100%" (полностью открыто)
	-)-)-	мигает	Привод останавливается в положении "100%" (полностью открыто), мигает индикатор, а затем привод готов перейти в положение "0%" (полностью закрыто)
и удерживайте 5 сек.	0	не горит	Привод перемещается в положение "0%" полностью закрыто)
		мигает	Привод останавливается в положении "0%" (полностью закрыто). Индикатор мигает, калибровка завершена
3. Завершение калибровки		горит	Привод перемещается в положение, указанное управляющим сигналом

ВНИМАНИЕ!

Перед выполнением процедуры настройки привода регулировка ограничений хода должна быть уже выполнена (см. раздел "Регулировка ограничения хода и концевых выключателей")

ПЛАТА УПРАВЛЕНИЯ РЕГУЛИРУЮЩЕГО ПРИВОДА СЕРИИ ОМ / ОМЕх С ДВИГАТЕЛЕМ ПОСТОЯННОГО ТОКА

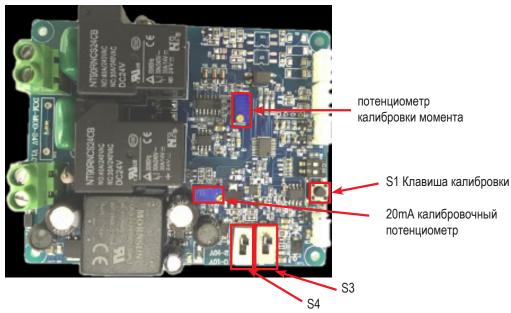


Рис.4 Плата управления электропривода постоянного тока серии ОМ

ВНИМАНИЕ!

Привод уже отрегулирован заводом изготовителем. Настройки выполняются только в случае необходимости квалифицированным специалистом

УСТАНОВКА И ИЗМЕНЕНИЕ ТИПА СИГНАЛА

Настройка типа сигнала могут быть изменены в соответствии с Таблицей 4.

КАЛИБРОВКА ТОКОВОГО СИГНАЛА

- Нажмите и удерживайте клавишу калибровки S1 примерно 3 секунды, привод автоматически отрегулируется и запустится на полный ход.
- Подайте на привод сигнал 20mA, чтобы привести его в полностью открытое положение, и отрегулируйте потенциометр 20mA так чтобы ток обратной связи стал ровно 20 мА. Калибровка завершена.

НАСТРОЙКА ПРИВОДА

- Нажмите и удерживайте клавишу калибровки S1 примерно 3 секунды индикатор "D2" изменится с мигающего на постоянно горящий, привод автоматически приводится в движение в направлении полного открытия.
- Когда привод останавливается в полностью открытом положении, загорается индикатор "D3", центральный процессор регистрирует полностью открытое положение, затем автоматически переключается на движение в полностью закрытое положение, а индикатор снова D3" гаснет.
- Как только привод будет остановлен в положении полного закрытия, световой индикатор "D4" сменится с выключенного на включенный, центральный процессор автоматически запишет положение полного закрытия. Световой индикатор "D4" изменится с постоянно включенного на мигающий. На этом настройка завершена. Электропривод перейдет в положение текущего заданного сигнала.

Таблица 4 Выбор типа входного сигнала и сигнала обратной связи

	Тип сигнала	Выходной сигнал	Входной сигнал
		S4	S 3
Ток	4-20mA		
Напрожение	2-10V		
Напряжение	0-10V		

ПЛАТА УПРАВЛЕНИЯ ПРИВОДА ОМ С ТРЕХФАЗНЫМ ДВИГАТЕЛЕМ

ВНИМАНИЕ!

Привод уже отрегулирован заводом изготовителем. Настройки выполняются только в случае необходимости квалифицированным специалистом

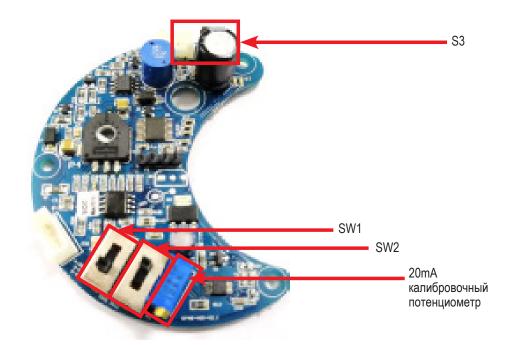


Рис.5 Принципиальная схема платы электропривода

УСТАНОВКА ТИПА СИГНАЛА

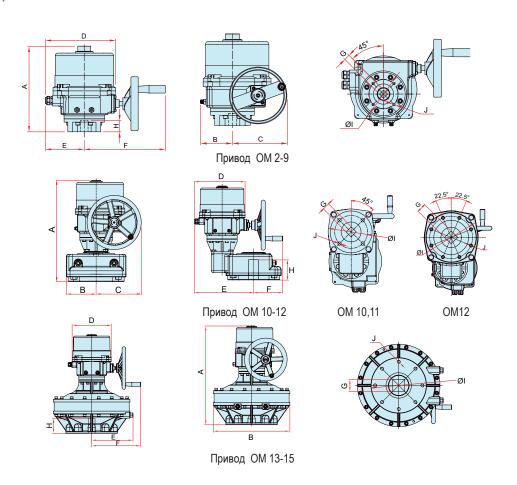
Установка и изменение типа сигнала могут быть выполнены только в соответствии с Таблицей 4

КАЛИБРОВКА ТОКОВОГО СИГНАЛА

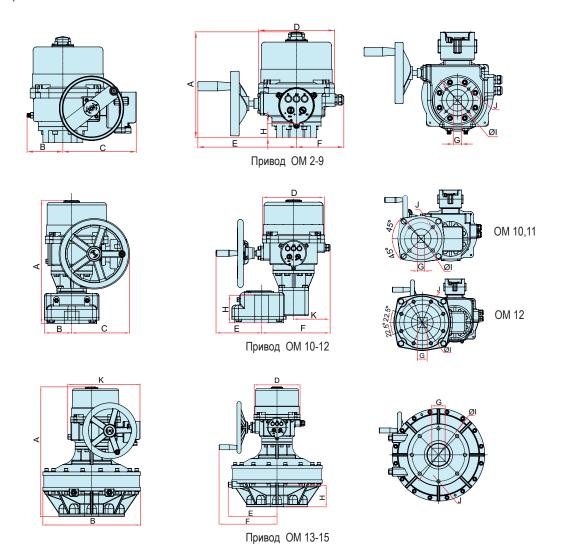
- Нажмите и удерживайте клавишу S3 в течение 3 секунд, привод автоматически начнет настраиваться на полный ход.
- Подайте на клеммы сигнал 20mA, чтобы перевести привод в полностью открытое положение, и отрегулируйте потенциометр 20mA так чтобы ток обратной связи стал ровно 20mA.

НАСТРОЙКА ПРИВОДА

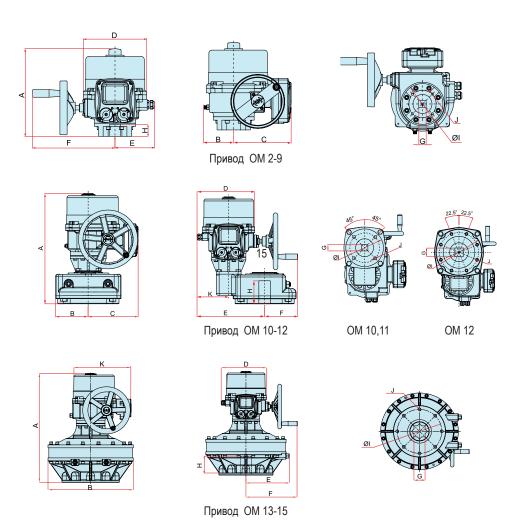
- Нажмите и удерживайте калибровочную клавишу S3 примерно 3 секунды, световой индикатор сменится с мигающего на постоянно горящий, а привод автоматически начнет движение в направлении полного открытия.
- Когда привод останавливается в полностью открытом положении, загорается индикатор, и центральный процессор регистрирует полностью открытое положение, а затем автоматически приводится в действие в направлении полного закрытия, и индикатор снова гаснет.
- Когда привод останавливается в полностью закрытом положении, загорается индикатор, центральный процессор регистрирует положение полного закрытия, и включается мигающий индикатор: настройка завершена, привод перейдет в положение, соответствующее управляющему сигналу.


УСТРАНЕНИЕ НЕПОЛАДОК

Неисправность	Причина	Порядок устранения
	1.1. Отсутствует питание привода	1.1. Проверить питание привода
	1.2. Входной сигнал отсутствует либо имеет неверное значение	1.2. Проверить входной сигнал на наличие и ошибки
	1.3.Потеря контакта с платой управления, либо ее поломка	1.3. Проверить контакт клеммных колодок заменить плату при необходимости
	1.4. Сработала защита от перегрева	1.4. Подождать пока двигатель охладится
1. Привод не срабатывает	1.5 Концевой выключатель сработал промежуточном положении	1.5. Отрегулируйте кулачки концевых выключателей (см.стр.7)
	1.6. Поврежден конденсатор двигателя (кроме AC380V)	1.6. Замените пусковой конденсатор двигателя
	1.7. Повреждена обмотка двигателя	1.7. Замените двигатель
	1.8. Значение тока на клемме ввода сигнала слишком большое (регулирующий привод)	1.8. Замените плату управления
	2.1. Сигнал на входе не стабилен	2.1. Проверьте входной сигнал
2. Привод работает непрерывно без остановок в каком-либо из положений.	2.2. Потенциометр платы управления поврежден	2.2. Замените потенциометр
	2.3. Ослаблена шестерня потенциометра или секторная шестерня	2.3. Проверьте винт крепежного устройства
	3.1. Ошибка входного сигнала	3.1. Проверить входной сигнал
3. Входной сигнал не соответствует сигналу обратной связи (регулирущий привод)	3.2. Сопротивление калибровочного потенциометра изменено некорректно	3.2. Выполнить настройку сопротивления потенциометра
r	3.3. Положение шестерни потенциометра изменено	3.3. Отрегулировать механизм потенциометра
4. Отсутствует сигнал обратной связи	4.1. Плохой контакт сигнальной лампы	4.1. Проверить контакт и электрическую схему подключений

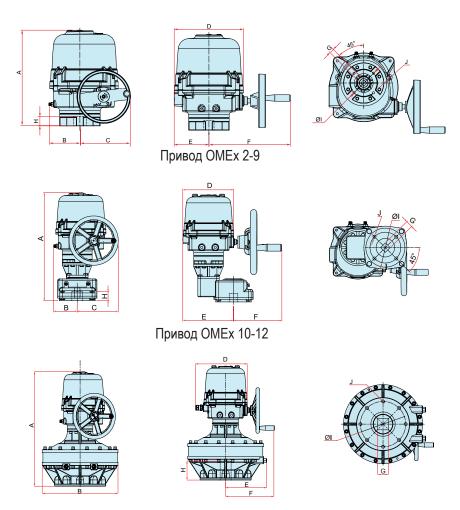

ВНИМАНИЕ! в случае, если привод долгое время не вводился в эксплуатацию после установки, сначала включите источник питания на непродолжительное время прежде чем включать привод. Это необходимо чтобы внутренний модуль обогрева удалил возможно образовавшийся конденсат.

ПРИВОД ЧЕТВЕРТЬОБОРОТНЫЙ ОМ 2-15 КОНФИГУРАЦИЯ BASIC / INTEGRAL


Привод	Α	В	С	D	Е	F	G	Н	ØI	J	Масса															
OM2	268	77	123	216	121	245	14x14	35	70	4-MB	11															
OM3	200	,,,	120	210	121	243	17x17	33	70	4-1010	11															
OM4								22x22		102	4-M10															
OM5	327	103	187	266	150	277	22x22 27x27	55	102 125	4-M10 4-M12	22															
OM6							27x27		125	4 1440																
OM7							ZIXZI		123	4-M12																
OM8	200	127	242		161	333	27x27	65	125	4-M12	36															
OM9	380	300	127	242		101	333	36x36	05	140	4-M16	30														
OM10	532	118	242		308	186	40x40	85	140 165	4-M16 4-M20	76															
OM11				293	293	293	293	293	293	293	293	293	293	293	293	293	293	293	293			46x46		165	4-M20	
OM12	545	160	242		343	160	55x55	130	254	8-M16	107															
OM13									254	8-M16																
OM14	672	520	_		281	331	55x55 75x75	120	200	8-M20	218															
OM15									298	0-1/120																

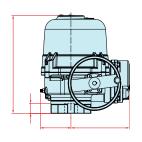
ПРИВОД ЧЕТВЕРТЬОБОРОТНЫЙ ОМ 2-15 КОНФИГУРАЦИЯ INTEGRATION

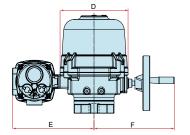
OOHODHDIE I AS	HOBIBLE PASMEPBI (MIM) VI MACCA (KI) TIPVIBOGOB																		
Привод	Α	В	С	D	Е	F	G	Н	ØI	J	K	Масса							
OM2	268	77	208	190	240	121	14x14	35	70	4-MB		12,2							
OM3	200	11	200	190	240	121	14314	33	70	4-IVID	_	12,2							
OM4							22x22		102	4-M10									
OM5	327	110	225	266	301	145	22x22	55	55	55	55	55	55	55	55	102 125	4-M10 4-M12	_	23,2
OM6							07,07		125	4 M40		,_							
OM7							27x27		125	4-M12									
OM8	200	407	407	407	407	407	107	040		222	161	27x27	CE	125	4-M12		27.0		
OM9	380	127	248		333	101	36x36	65	140	4-M16	_	37,2							
OM10	532	440	118	118	242		180	300	40x40	0E	140 165	4-M16 4-M20		77.0					
OM11	532	110	242	265	100	300	46x46	85	165	4-M16 4-M20	156	77,2							
OM12	545	160	242		168	343	55x55	130	254	8-M16		108,2							
OM13									254	8-M16									
OM14	672	520	_		281	331	55x55 75x75	120	000	0.1400	385	219,2							
OM15							TOXIO		298	8-M20									

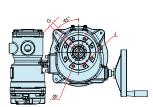

ПРИВОД ЧЕТВЕРТЬОБОРОТНЫЙ ОМ 2-15 КОНФИГУРАЦИЯ INTELLIGENT

Привод	Α	В	С	D	Е	F	G	Н	ØI	J	K	Macca
OM2	268	79	198	190	240	121	14x14	35	70	4-M8	_	13
OM3	200	7.5	130	130	240	121	17x17		70	7 100		15
OM4							22x22		102	4-M10		
OM5	327	110	210	232	301	445	22x22	55	102	4-M10		24
OM6	321	110	210	232	301	145	27x27	55	125	4-M12	_	24
OM7							27x27		125	4-M12		
OM8	380	127	234	265	333	161	27x27	65	125	4-M12		38
OM9	300	127	234	200	333	101	36x36	05	140	4-M16		30
OM10	532	118	227	265	180	300	40x40	85	140 165	4-M16 4-M20		78
OM11							46x46		165	4-M20	156	
OM12	545	160	244	168	168	343	55x55	130	254	8-M16		109
OM13									254	8-M16		
OM14	672	520	-	281	281	331	55x55 75x75	120	200	0 M20	385	220
OM15									298 8-M20			

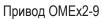
ПРИВОДЫ ВО ВЗРЫВОЗАЩИЩЁННОМ ИСПОЛНЕНИИ OMEX КОНФИГУРАЦИЯ INTEGRAL

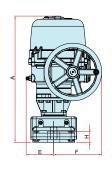


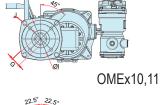


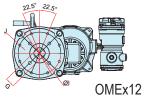

Привод ОМЕх 13-15

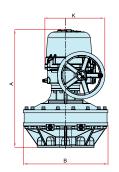
Привод	Α	В	С	D	Е	F	G	Н	ØI	J	Масса	Примечание
OMEx2	286	83	126	209	108	242	14x14	35	70	4-M8	11	
OMEx3	200	03	120	209	100	100 242	17x17	ან	70	4-IVIO		
OMEx4	054						22x22		102	4-M10		
OMEx5		115	187	256	129	302	22x22	55	102	4-M10	22	
OMEx6	354	115	107	230	129	302	27x27	55	125	4-M12	22	
OMEx7							27x27		125	4-M12	1	
OMEx8	445	120	040		152	340	27x27	65	125	4-M12	36	
OMEx9	415	136	242		102	340	36x36	00	140	4-M16	30	
OMEx10	589	118	242		308	192	40x40	85	140 165	4-M16 4-M20	76	
OMEx11				308			46x46		165	4-M20		
OMEx12	602	160	242		343	160	55x55	130	254	8-M16	107	
OMEx13	729								254	8-M16		
OMEx14		729	520	_		281	340	55x55 75x75		200	0 MOO	218
OMEx15									298	8-M20		

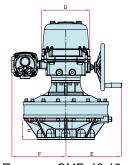

ПРИВОДЫ ВО ВЗРЫВОЗАЩИЩЁННОМ ИСПОЛНЕНИИ ОМЕх КОНФИГУРАЦИЯ INELLIGENT











Приводы ОМЕх13-15

Привод	Α	В	С	D	E	F	G	Н	ØI	J	K	Масса	Примечание	
OMEx2	286	83	160	209	242	294	14x14	35	70	4-M8		13		
OMEx3	200	00	100	203	242	234	17x17	33	70	4-1010		10		
OMEx4							22x22		102	4-M10				
OMEx5	354	113	220	255	293	315	22x22 27x27 55 102 4-M10 125 4-M12	319	24					
OMEx6							27,27		125	4-M12	010			
OMEx7							27x27		120	4-10112				
OMEx8	445	407	040		240	207	27x27	0.5	125	4-M12	25 4-M12		20	
OMEx9	415	127	242		340	337	36x36	65	140	4-M16		38	Ручной дублёр	
OMEx10	589	127	242		192	484	40x40	85	140 4-M16 165 4-M20			78		
OMEx11				200			46x46		165	4-M20	337			
OMEx12	545	160	244	296	160	519	55x55	130	254	8-M16		109		
OMEx13									254	8-M16				
OMEx14	729	520	_		340	337	55x55 75x75	120	298	8-M20	369	220		
OMEx15														

ПРИВОДЫ ЭЛЕКТРИЧЕСКИЕ ЧЕТВЕРТЬОБОРОТНЫЕ СЕРИИ ОМ / ОМЕХ

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Визуальный осмотр на предмет видимых повреждений и нарушений в работе проводится обслуживающим техническим персоналом каждые 6 месяцев с момента ввода привода в эксплуатацию. Обращать внимание необходимо на следующие моменты:

- внешний вид привода (следы коррозии, изменение цвета защитного покрытия, появление следов технологических жидкостей и т.п.
- целостность проводки силовых и сигнальных цепей, подключенных к приводу, а также навесного оборудования (если имеется), таких как блоки концевых выключателей, сигнализаторы обратной связи и т.п.
- надежность соединения привода с клапаном, наличие посторонних шумов в работе привода, появление запаха дыма и т.п

ВНИМАНИЕ! В случае выявления факторов, указывающих на возможную неисправность либо отклонений в работе привода - проводится его полная диагностика квалифицированным специалистом.

В случае перенастройки или разборки оборудования соблюдайте моменты затяжки болтов между приводом, арматурой и редуктором. После выполнения работ выполнить пробный пуск привода. При необходимости - произвести смазку направляющихся движущейся части штока, передающего момент на арматуру (рекомендовано использовать литиевой универсальной смазки с ЕР-присадками на основе минеральных масел.

Шток арматуры смазывается отдельно.

Каждые 12 месяцев рекомендуется проделывать следующие операции:

- проверить работоспособность ручного дублера путем полного открытия и закрытия клапана вручную
- проверить средствами КИПиА корректность сигналов управления, сигналов обратной связи и реакции привода

При выявлении неисправностей провести работы по их устранению

